Central Limit Theorem derived from Stochastic Processes

Central Limit Theorem derived from Stochastic Processes

Regular price
€7.00 EUR
Sale price
€7.00 EUR
Regular price
Sold out
Unit price
per 
Tax included. Shipping calculated at checkout.

 Take a look at the home page of the course
If you prefer, you can enroll directly on Thinkific (it is just the same as doing it on this website, but checkouts are quicker there and require you insert less data)

 

It is well known that a plethora of natural stochastic processes often showcase a Gaussian probability distribution. This course aims to explain mathematically why such behavior is displayed.

The formulas that are derived in the course, will allow calculating the probability density function from the moments of the stochastic process.

The results presented are related to the well-known Central Limit Theorem (CLT). However, the latter is usually introduced when talking about random variables in Statistics, whereas it is definitely less obvious how the CLT affects Stochastic processes. The aim of this course is therefore to provide motivation as to how this happens mathematically.

This is an advanced course based on the instructor's PhD thesis, therefore the presentation and the formulas presented are original, despite the literature abounds with material relevant to this subject.

The prerequisites to the course are listed on this page and in the introductory video. It is worth mentioning that the most fundamental properties of the Fourier Transform and Fourier series, which are needed throughout the course's lectures, are revised in the in the first part of the course.